New Results for the Couette-Taylor System in the Small Gap Limit

Takeshi Akinaga (秋田大学, 日本)
○ Sotos C. Generalis (Aston University, UK)
Friedrich H. Busse (University of Bayreuth, Germany)

Project ATM2BT has received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No 824022.
Taylor Couette flow

- Fluid flow between two concentric cylinders rotating with different velocities ($r_1 \Omega_1 \neq r_2 \Omega_2$)

- Instability based on the centrifugal force ($r_1 \Omega_1^2 > r_2 \Omega_2^2$)

- Taylor vortex flow (monotonic in azimuthal direction)
States

Twisted vortex flow

Wavy inflow boundary

Wavy outflow boundary

Wavelets

Figs 4, 8, 9, 10 of Andereck et.al: Phys. Fluids, 26, 1395–1401 (1983)
Small gap approximation
for nearly co-rotating cylinders

$$\left| \frac{\Omega_2 - \Omega_1}{\Omega_2 + \Omega_1} \right| \ll 1, \quad \frac{r_2 - r_1}{r_2 + r_1} \ll 1$$

$$(r_1 \Omega_1 > r_2 \Omega_2)$$
Governing equation

- Navier-Stokes equation (normalised):
 \[
 \left[\frac{\partial \mathbf{u}}{\partial t} + \mathbf{u} \cdot \nabla \right] \mathbf{u} + \mathbf{\Omega} \times \mathbf{u} = -\nabla \Pi + \nabla^2 \mathbf{u},
 \]
 \[\nabla \cdot \mathbf{u} = 0\]

- Boundary condition:
 \[\mathbf{u} = \mp R \hat{\mathbf{i}} \quad \text{at} \quad z = \pm 1\]

- Basic profile:
 \[\mathbf{u} = -R z \hat{\mathbf{i}}\]

- Time scale: \(d^2/\nu\)
- Length scale: \(d\)
- Velocity unit: \(\nu/d\)
Control parameters

- Reynolds number:
 \[R \equiv (\Omega_1 - \Omega_2) (r_1 + r_2) d/4\nu \]

- Rotation number (twice the mean rotation rate normalised):
 \[\Omega = (\Omega_1 + \Omega_2) d^2/\nu \]

- Time scale: \(d^2/\nu \)
- Length scale: \(d \)
- Velocity unit: \(\nu/d \)

- Kinematic viscosity: \(\nu \)
- Half gap width:
 \[d = \frac{r_2 - r_1}{2} \]
Decomposition of flow field \mathbf{u}

Elimination the equation of continuity:

$$ u = (-R z + U(t, z)) \hat{i} + V(t, z) \hat{j} + \tilde{\mathbf{u}}, $$

$$ \tilde{\mathbf{u}} = \nabla \times (\nabla \times k \phi) + \nabla \times k \psi. $$

$-R z$: basic flow

U: mean flow part in azimuthal (x) direction

V: mean flow in span-wise (y) direction

ϕ: poloidal potential

ψ: toroidal potential

\hat{i}: unit vector in (x) direction

\hat{j}: unit vector in (y) direction

k: unit vector normal to wall (z) direction
Poloidal-Toroidal decomposition

Operators $k \cdot \nabla \times (\nabla \times \ldots,)$ and $k \cdot \nabla \times$ on Navier-Stokes equation we obtain the following two equations for ϕ and ψ:

Poloidal(ϕ) equation:

$$\left(\nabla^2 - \frac{\partial}{\partial t} \right) \nabla^2 \Delta_2 \phi - \Omega \frac{\partial}{\partial y} \Delta_2 \psi$$

$$= (-Rz + U) \frac{\partial}{\partial x} \nabla^2 \Delta_2 \phi - \frac{\partial^2 U}{\partial z^2} \frac{\partial}{\partial x} \Delta_2 \phi$$

$$- \frac{\partial^2 V}{\partial z^2} \frac{\partial}{\partial y} \Delta_2 \phi + V \frac{\partial}{\partial y} \nabla^2 \Delta_2 \phi + k \cdot \nabla \times (\nabla \times (\tilde{u} \cdot \nabla \tilde{u}))$$

Toroidal(ψ) equation:

$$\left(\nabla^2 - \frac{\partial}{\partial t} \right) \Delta_2 \psi + \Omega \frac{\partial}{\partial y} \Delta_2 \phi$$

$$= (-Rz + U) \frac{\partial}{\partial x} \Delta_2 \psi + \left(R - \frac{\partial U}{\partial z} \right) \frac{\partial}{\partial y} \Delta_2 \phi$$

$$+ V \frac{\partial}{\partial y} \Delta_2 \psi + \frac{\partial V}{\partial z} \frac{\partial}{\partial x} \Delta_2 \phi - k \cdot \nabla \times (\tilde{u} \cdot \nabla \tilde{u})$$
Mean flow equations

Two equations for the mean flows in the azimuthal U and axial V directions by taking average over (x, y) plane:

\[
\left(\frac{\partial^2}{\partial z^2} - \frac{\partial}{\partial t} \right) U = - \frac{\partial}{\partial z} \left\langle \Delta_2 \phi \left(\frac{\partial^2}{\partial x \partial z} \phi + \frac{\partial}{\partial y} \psi \right) \right\rangle
\]

\[
\left(\frac{\partial^2}{\partial z^2} - \frac{\partial}{\partial t} \right) V = - \frac{\partial}{\partial z} \left\langle \Delta_2 \phi \left(\frac{\partial^2}{\partial y \partial z} \phi - \frac{\partial}{\partial x} \psi \right) \right\rangle
\]

Herein $\Delta_2 \equiv \frac{\partial}{\partial x^2} + \frac{\partial}{\partial y^2}$, the average over (x, y):

\[
\left\langle \cdot \right\rangle \equiv \frac{\alpha \beta}{4\pi^2} \int_0^{2\pi/\alpha} \int_0^{2\pi/\beta} \phi \ dx \ dy \left(\cdot \right)
\]

Boundary conditions:

$U = V = \phi = \frac{\partial \phi}{\partial z} = \psi = 0$ at $z = \pm 1$
Expansion series for wall direction

Boundary conditions:

\[U = V = \phi = \frac{\partial \phi}{\partial z} = \psi = 0 \text{ at } z = \pm 1 \]

\[F_\ell(\pm 1) = \frac{d}{dz} F_\ell(\pm 1) = G_\ell(\pm 1) = 0 \text{ for } \ell = 0, 1, 2, \cdots : \]

\[F_\ell(z) = \frac{\ell + 1}{\ell + 2} T_{\ell+4}(z) - 2T_{\ell+2}(z) + \frac{\ell + 3}{\ell + 2} T_\ell(z), \]

\[G_\ell(z) = \frac{T_\ell(z) - T_{\ell+2}(z)}{2} \]

\[T_\ell(z) : \ell\text{-th Chebyshev polynomial for } \ell = 0, 1, 2, \cdots \]
Primary instability

Taylor number \(T \equiv \Omega (R - \Omega) \)

Critical state at \((T_c, \beta_c) = (106.74, 1.558)\)

Taylor vortex flow: \(T \geq T_c \)
Non-linear analysis: DNS

Expansions for ϕ, ψ:

$$
\phi = \sum_{\ell=0}^{L} \sum_{m=-M}^{M} \sum_{n=-N}^{N} a_{\ell mn}(t) F_\ell(z) \exp \left[i (m\alpha x + n\beta y) \right], \\
\psi = \sum_{\ell=0}^{L} \sum_{m=-M}^{M} \sum_{n=-N}^{N} b_{\ell mn}(t) G_\ell(z) \exp \left[i (m\alpha x + n\beta y) \right],
$$

where $a_{\ell00} = b_{\ell00} = 0$.

Expansions for mean flows U, V:

$$
U = \sum_{\ell=0}^{L} c_\ell(t) G_\ell(z), \quad V = \sum_{\ell=0}^{L} d_\ell(t) G_\ell(z) + \mu \left(z^2 - 1 \right).
$$

μ is determined such that there is no mean flow in span-wise (y) direction: $\int_{-1}^{1} V dz = 0$.
Non-linear analysis: Equilibrium calculation

Expansions for ϕ, ψ:

$$\phi = \sum_{\ell=0}^{L} \sum_{m=-M}^{M} \sum_{n=-N}^{N} a_{\ell mn} F_{\ell}(z) \exp \left[i \left(m\alpha(x - c t) + n\beta y \right) \right],$$

$$\psi = \sum_{\ell=0}^{L} \sum_{m=-M}^{M} \sum_{n=-N}^{N} b_{\ell mn} G_{\ell}(z) \exp \left[i \left(m\alpha(x - c t) + n\beta y \right) \right],$$

where $a_{\ell00} = b_{\ell00} = 0$, and c is a constant phase velocity.

Expansions for mean flows U, V:

$$U = \sum_{\ell=0}^{L} c_{\ell} G_{\ell}(z), \quad V = \sum_{\ell=0}^{L} d_{\ell} G_{\ell}(z) + \mu \left(z^2 - 1 \right).$$

μ is determined such that there is no mean flow in span-wise (y) direction: $\int_{-1}^{1} V \, dz = 0.$
Visualisation

Separation of flow field:

\[u = (-R z + U(t, z)) i + V(t, z) j + \tilde{u}, \]
\[\tilde{u} = \nabla \times (\nabla \times k \phi) + \nabla \times k \psi. \]

Moreover:

\[\tilde{u} = \tilde{u} i + \tilde{v} j + \tilde{w} k = \nabla \times i \phi_1 + \nabla \times j \phi_2 + \nabla \times k \psi, \]

where

\[\phi_1 = \frac{\partial \phi}{\partial y}, \quad \phi_2 = -\frac{\partial \phi}{\partial x}. \]

Each solenoidal potential can be a “stream function”:

\[\phi_1 : \text{on } (y, z) \text{ plane for } \frac{\partial \tilde{u}}{\partial x} = 0, \]
\[\phi_2 : \text{on } (z, x) \text{ plane for } \frac{\partial \tilde{v}}{\partial y} = 0, \]
\[\psi : \text{on } (x, y) \text{ plane for } \frac{\partial \tilde{w}}{\partial z} = 0 \]
Linear stability analysis of non-linear states

Expansion for infinitesimal perturbation on non-linear state for $(R, \Omega; \alpha, \beta)$:

$$
\tilde{\phi}_\ell = e^{\sigma t} \sum_{\ell=0}^L \left[\sum_{(m,n)\neq(0,0)} F_\ell(z) \tilde{a}_{\ell mn} \exp \left\{ i \left[(m\alpha + d) (x - ct) + (n\beta + b) y \right] \right\} \right],
$$

$$
\tilde{\psi}_\ell = e^{\sigma t} \sum_{\ell=0}^L \left[\sum_{(m,n)\neq(0,0)} G_\ell(z) \tilde{b}_{\ell mn} \exp \left\{ i \left[(m\alpha + d) (x - ct) + (n\beta + b) y \right] \right\} \right],
$$

σ: Linear growth rate. Unstable mode: $(\alpha \pm d, \beta \pm b)$

$\tilde{\phi}$: Perturbation for non-linear state $\phi(R, \Omega; \alpha, \beta)$

$\tilde{\psi}$: Perturbation for non-linear state $\psi(R, \Omega; \alpha, \beta)$

(d, b): Floquet parameters for a periodic state with (α, β)

$\sigma = \sigma(d, b)$ for each nonlinear state (ϕ, ψ, U, V) for $(R, \Omega; \alpha, \beta)$

Stability boundary:

$$
\text{Re}[\sigma(d, b; R, \Omega, \alpha, \beta)] = 0 \quad \& \quad \partial \text{Re}(\sigma)/\partial d = \partial \text{Re}(\sigma)/\partial b = 0
$$
Stability boundary of Taylor vortex flow

\[\beta = \beta_c (= 1.558) \]

\[\text{M. Nagata: J Fluid Mech. 1988} \]
Stability boundaries

Figure 3 of Andereck et.al: Phys. Fluids, 26, 1395–1401 (1983)

(a) Taylor vortices
(b)
(c)
(d)
(e)
Stability boundary of TVF

$\beta = 1.25$

1. AZI
2. TWI, WVF
3. TWI+WIB
Instability of Taylor vortex flow

FIGURE 20. (a) Twisted Taylor vortices (TWI); $R_i = 1040$, $R_o = 720$. (b) Wavy inflow boundaries (WIB); $R_i = 1310$, $R_o = 700$. (c) Wavy outflow boundaries (WOB); $R_i = 1170$, $R_o = 700$. (d) Wavelets (WVL); $R_i = 1250$, $R_o = 730$. $f = 30$ for all four cases. The letters I and O indicate the inflow and outflow boundaries, respectively.

Fig. 20 of Andereck et.al: J. Fluid Mech. v. 164, pp. 155–183 (1986)
Instability boundary of Taylor vortex flow

- OTV
- WTV
- WVF
- O-WVF
- O-WVF (SUBH2)
Instability of Taylor vortex flow: $\beta = 1.25$

- Stability boundaries for Ordinary twist state

$$(R, \Omega, \alpha) = (150, 50, 1.7)$$
Instability of Taylor vortex flow: $\beta = 1.25$

- Stability boundaries for Wavy twist state

\[(R, \Omega, \alpha) = (75, 65, 0.6) \]
Instability of Taylor vortex flow: $\beta = 1.25$

- Stability boundaries for Wavy vortex flow

$(R, \Omega, \alpha) = (110, 15, 0.38)$
Instability of Taylor vortex flow: $\beta = 1.25$

- Stability boundaries for Oscillatory Wavy vortex flow

$\text{(R, } \Omega, \alpha) = (180, 35, 0.27)$
Instability of Twist (Tertiary) state: $\beta = 1.25$

Fig. 9 ($\beta = 1.25$) of Hegseth's
Instability of Taylor vortex flow: $\beta = 1.25$

Fig. 20 of Andereck et.al: J. Fluid Mech. v. 164, pp. 155–183 (1986)
Instability of Twists (Tertiary) states: $\beta = 1.25$

- Stability boundaries (in blue) for quaternary states
- Most unstable (d, b): subharmonics of twist states (α, β)
Wavy inflow/outflow boundary (WIB/WOB)

- Subharmonic state bifurcated from Ordinary twist state (3x2)
- Phase unlocked drifting in x independently

WIB: \((R, \Omega, \alpha, \beta) = (130, 53, \beta_0/2, \beta_0/2) \) \((\beta_0 = 1.25) \)

WOB: \((\tilde{R}, \tilde{\Omega}, \alpha, \beta) = (130, 53, \beta_0/2, \beta_0/2) \) \((\beta_0 = 1.25) \)
Characteristics of WIB/WOB

- Subharmonic state bifurcated from Ordinary twist state (3x2)
- Drifting in \(x \) (phase unlocked)
- Symmetry for Quaternary state WIB/WOB (\(Q^{WIB}/Q^{WOB} \)):

\[
Q^{WIB}(t, x - x_0, y - y_0, z) = Q^{WOB}(t, x_0 - x, y - y_0, -z)
\]

for coordinates \(x_0 \) and \(y_0 \).
- more symmetries for sub-solutions (like wave packets)

An example of the symmetry for coefficients. (\(*\): complex conjugate)

<table>
<thead>
<tr>
<th>(\ell)</th>
<th>Poloidal</th>
<th>Toroidal</th>
<th>(U)</th>
<th>(V)</th>
</tr>
</thead>
<tbody>
<tr>
<td>odd</td>
<td>(a_{\ell m n}^{WOB} = (a_{\ell m n}^{WIB})^*)</td>
<td>(b_{\ell m n}^{WOB} = -(b_{\ell m n}^{WIB})^*)</td>
<td>(c_{\ell}^{WOB} = c_{\ell}^{WIB})</td>
<td>0</td>
</tr>
<tr>
<td>even</td>
<td>(a_{\ell m n}^{WOB} = -(a_{\ell m n}^{WIB})^*)</td>
<td>(b_{\ell m n}^{WOB} = (b_{\ell m n}^{WIB})^*)</td>
<td>(c_{\ell}^{WOB} = -c_{\ell}^{WIB})</td>
<td>0</td>
</tr>
</tbody>
</table>
Oscillatory wavy vortex flow (O-WVF)

- Subharmonic state bifurcated from Ordinary twist state (2x1)
- Oscillatory state with wavy twist symmetry
- \((R, \Omega) = (180, 52), (\alpha, \beta) = (0.9, 1.25)\)
Normalised (by $\tau_0 (= -R)$) momentum transport

TVF: $\beta = \beta_0$ ($\beta_0 = 1.25$)

OTV: $\alpha = \frac{3}{2} \beta_0$, $\beta = \beta_0$

quaternary WIB/WOB: $\alpha = \beta = \beta_0 / 2$

quaternary O-WVF: $\alpha = \frac{3}{4} \beta_0$, $\beta = \beta_0$

$\Omega = 54$
Subharmonic instability of Taylor vortex flow: $\beta = 1.466$

(Tertiary state: Subharmonic Oscillatory Wavy vortex flow)

- **WVL ($\beta = 1.466$)**
- $(R, \Omega) = (246, 66.2)$
 - Fig. 4c of Hegseth et.al: Phys. Rev. E, v. 53, pp. 507–521 (1996)

- $(R, \Omega) = (200, 60)$
- $(\alpha, \beta) = (0.612, 0.733)$
Appendix

Stability boundaries

(a) Taylor vortices

(b)

(c)

(d)

(e)

Figure 3 of Andereck et.al: Phys. Fluids, 26, 1395–1401 (1983)